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of the a]umina compact at any point, and to produce report ready graphs
depicting the relationship between any two prescribed variables,

Analysis of other errors associated with the use of the dilatometer shows
that these are negligible compared with thermal expansion effects.

i 2

- — e

U SR,

The rate of densification is controlled by an interface reaction mechanism
never previously observed in the densification of alumina. Mass transport
is limited by the movement of grain boundary dislocations which act as sites
for atoms to detach from grains. The actual rate limiting process is the
diffusion of solute in the lattice since the motion of solute atoms can
result in a large number of atoms being freed from a grain boundary dislo-
cation. Once separated from the dislocation the atoms quickly diffuse away.
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f Good correlation between experimental data and the theory is given in the
relative density range 0.64-0.95, although the theory does not adequately
describe pore geometry above 0.9 relative density. The rate of densification
ﬁ, in the temperature range 1000-1150°C is given by:

dp_ , (D ) "3(%)2 p*2CyDn
dt ® Do) \bB| Gopertc,
where D relative density
’ Do initial relative density
R = particle radius
t = time
by = Burgers vector
S bn = component of Burgers reactor normal
’ to the grain boundary
* = effective contact stress
0.5
diffusivity of solute
effective atomic volume of solute
shear modulus
ratio of solute concentration near dislocation
to solute concentration in bulk
Boltzmann's constant
temperature
bulk solute concentration measured
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The measured pressure dependence of 2.1 1s.also in good agreement with the
theoretical prediction of 2. The activation energy was determined to
) be 290kJ/mole.
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SUMMARY OF DATA AND DATA REDUCTION

In our HIP experiments, we continuously measure temperature,
pressure, and change in can diameter. Changes in can diameter are moni-
tored using two tungsten probes (see Figure 1) which form part of a LVDT
circuit. We calculate a continuous record of density as a function of
time from these data. As a result, we are able to collect much more
information from a single run than 1s possible fn ordinary HIP experi-
" ments 1n which density 1s recorded only at the beginning and end. In

this section all the experimental data {s presented. Furthermore, we
describe the procedure for converting records of temporature, pressure
and can shrinkage into a continuous record of density as a function of
time during the HIP experiment. Corrections for thermal expansfon together with
assumptfons regarding the geometry of the sample and can during densifi-
catfon are discussed. A Fortran computer program which carries out
these calculations 1s given in the appendix.
The experiments were planned as one or more periods of time
during which the sample was held at roughly constant temperature and
pressure. A summary of the conditions for all six experiments is given
in Table 1. The experiment numbers in the table will be used throughout
‘ this report to distinguish the varfous runs. In experiments 21, 22a,
and 22c, temperature and/or pressure were changed during the experiment
i so that additional kfnetics data could be obtained.
Tables 2 through 7 give values of experimental data. The data
I were initially recorded on a strip-chart recorder. Values of pressure,
' temperature, and can shrinkage were read from the charts, correlated
with clock time, and keyed into a computer for processing. Temperature
l was measured at the sample tray, but a simple thermal calculation shows
that the temperature at the center of the sample will be largely equili-
' brated with the temperature at the surface of the can within one minute.
"Can shrinkage™ is the change in the outside diameter of the can as
' measured by the probe. Note that the can shrinkage is sometimes nega-
tive since thermal expansion is measurable at temperatures too low for
l densification., The tables also include relative density as calculated
I
I
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FIGURE 1. HIP PROBE UNIT SHOWING ALUMINA PROBES IN CONTACT WITH
STAINLESS STEEL CAN CONTAINING ALUMINA POWDER COMPACT
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TABLE 1, EXPERIMENTAL CONDITIONS FOR HIP EXPERIMENTS

Experiment Pressure Temperature
Number (MPa) C)

14 101 1150
‘ 19 102 1000
20 103 1050
21 34 1000
70 1000
22a 34 1050
100 1050
100 1150
22¢ 36 1050
100 1050
100 1150

P
Pk i T,
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TABLE 2. DATA FOR EXPERIMENT 14

Clock Elapsed Pressure Temperature Can shrinkage Relative
time time (min) (MPa) ) (mm) density
1

13:49 0.0 6.9 38 0.000 0.6531
14:02 13.0 20.7 51 0.000 0.6535
14:22 33.0 41.4 67 0.038 0.6583
14:31 42,0 44.1 64 0.044 0.6589
14:47 58.0 73.1 64 0.051 0.6596
14:56 67.0 94.5 65 0.056 0.6602
14:57 68.0 99.3 65 0.056 0.6602
15:40 111.0 93.9 115 -0.013 0.6538
16:40 171.0 98.9 672 -0.176 0.6540
17:06 197.0 99.3 878 ~0.184 0.6610
17:20 211.0 99.6 1000 0.260 0.7215
17:26 217.0 100.0 1050 0.657 0.7805
17:33 224.0 100.3 1100 1.086 0.8540
17:39 230.0 100.7 1150 1.467 0.9307
17:50 241.0 100.7 1150 1.586 0.9559
18:09 260.0 100.7

1150 1.594 0.9576 -

3
;
!
;




TABLE 3.

DATA FOR EXPERIMENT 19

Clock Elapsed Pressure Temperature Can shrinkage Relative
time time (min) (MPa) (C) (mm) density
12:44 0.0 0.0 29 0.000 0.6536
13:00 16.0 8.3 36 0.000 0.6538
13:05 21.0 16.2 42 0.000 0.6540
13:25 41.0 30.3 58 0.032 0.6581
13:41 57.0 49.0 59 0.040 0.6591
14:08 84.0 102.7 59 0.056 0.6609
15:01 137.0 97.9 285 0.032 0.6653
15:09 145.0 97.9 362 0.000 0.6642
15:18 154.0 98.6 445 -0.032 0.6633
15:27 163.0 98.6 529 -0.063 0.6626
15:52 188.0 99.3 763 -0.127 0.6641
16:13 209.0 100.3 946 -0.127 0.6716
16:19 215.0 100.5 993 0.000 0.6894
16:20 216.0 100.7 1000 0.032 0.6938
16:25 221.0 100.7 1004 0.222 0.7190
16:40 236.0 100.8 1003 0.492 0.7571
16:50 246.0 101.4 1002 0.603 0.7738
17:00 256.0 101.4 1004 0.691 0.7875
17:06 262.0 101.4 1000 0.730 0.7936
17:29 285.0 101.7 1002 0.865 0.8159
17:45 301.0 101.9 1003 0.953 0.8308
18:00 316.0 102.0 1003 1,000 0.8391
18:17 333.0 102.0 1003 1.048 0.8476
18:30 346.0 102.0 1005 1.087 0.8549
18:50 366.0 102.4 1008 1.13% 0.8639
18:55 371.0 102.4 1007 1.143 0.8653
19:00 376.0 102.4 1006 1.151 0.8667
19:05 381.0 102.4 1006 1.175 0.8712
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TABLE 4. DATA FOR EXPERIMENT 20
i
f Clock Elapsed Pressure Temperature Can shrinkage Relative
| time time (min) (MPa) (C) Com) density
12:45 0.0 0.0 26 0.000 0.6485
12:57 12.0 5.5 27 0.000 0.6485
13:01 16.0 15.2 36 0.000 0.6487
13:12 27.0 20.7 48 0.000 0.6491
13:19 34.0 24,1 53 0.000 0.6492
13:36 51.0 41.4 57 0.032 0.6529
13:59 74.0 80.7 58 0.048 0.6548
14:02 77.0 84.8 57 0.056 0.6557
‘ 14:10 85.0 100.0 57 0.056 0.6557
, 14:47 122.0 97.2 215 -0.016 0.6523
15:02 137.0 97.9 327 -0.048 0.6522
: 15:24 159.0 98.4 496 -0.063 0.6561
i 15:57 192.0 99.3 766 -0.127 0.6588
| 16:09 204.0 100.0 855 -0.127 0.6623
* 16:17 212.0 100.3 914 -0.095 0.6685
! 16:20 215.0 100.5 937 0.000 0.6810
; 16:25 220.0 100.7 973 0.119 0.6974
16:29 224.0 101.0 1000 0.286 0.7205
16:35 230.0 102.7 1050 0.571 0.7635
16:40 235.0 102.7 1054 0.826 0.8032
16:45 240.0 102.7 1050 0.984 0.8293 ~
16:50 245.0 102.7 1053 1.111 0.8518
16:55 250.0 102.7 1054 1.214 0.8707
17:00 255.0 102.7 1054 1.302 0.8872
17:05 260.0 102.7 1053 1,365 0.8995
17:10 265.0 102.7 1053 1.405 0.9073
17:15 270.0 102.7 1055 1.460 0.9187 .
17:20 275.0 102.7 1054 1.516 0.9302 2
17:25 280.0 102.7 1054 1.548 0.9368 I
17:30 285.0 102.7 1053 1.611 0.9504 :
17:40 295.0 102,7 1054 1.627 0.9539
17:50 305.0 102.7 1052 1.683 0.9660
17255 310.0 102.7 1082 1.691 0.9678

- ———
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TABLE 5. DATA FOR EXPERIMENT 21

Clock Elapsed Pressure Temperature Can shrinkage Relative

time time (min) (MPa) ) (mm) donsity

10:09 0.0 0.0 23 0.000 0.6547

10:35 26.0 20.7 45 -0.024 0.6527

10:47 38.0 27.6 51 0.008 0.6565

10:51 42.0 31.0 52 0.008 0.6565

) 10:57 48.0 36.0 53 0.024 0.6584
\ 11:24 75.0 34.5 168 0.000 0.6591
12:01 112.0 34,5 432 -0.079 0.6586

12:33 144.0 34.6 686 -0.159 0.6587

‘ 12:42 153.0 34.8 753 =-0.175 0.6594
* 13:00 171.0 34.5 888 -0.210 0.6607
13:13 184.0 34,5 992 -0.214 0.6645

13:15 186.0 34.5 1000 -0.191 0.6677

13:20 191.0 34.5 1000 -0.159 0.6715

13:23 194.0 34.5 1000 -0.127 0.6753

13:28 199.0 34.5 1000 -0.095 0.6791

13:35 206.0 34.5 1000 -0.063 0.6830

13:40 211.0 34.5 1000 -0.032 0.6870

13:47 218.0 34.5 1000 0.000 0.6909

13:55 226.0 34.5 1000 0.032 0.6950

14:06 237.0 34.5 1000 0.063 0.6990

14:18 249.0 34.5 1000 0.095 0.7031

14:33 264.0 34.5 1000 0.127 0.7072

! 14:50 281.0 34.5 1000 0.159 0.7114

15:15 306.0 34.5 1000 0.191 0.7156

15330 321.0 34.5 1000 0.206 0.7177

‘ 15:45 336.0 55.8 984 0.222 0.7191

15:48 339.0 71.0 998 0.222 0.7197

15:51 342.0 71.0 984 0.238 0.7212

15:57 348.0 66.2 999 0.262 0.7252

16:18 369.0 73.1 91 0.341 0.7357

16:20 371.0 7.7 999 0.349 0.7372

16:28 379.0 70.3 999 0.381 0.7417

16:37 388.0 70.3 1000 0.413 0.7463

16:48 399.0 70.3 1002 0.445 0.7509

16356 407.0 70.3 1002 0.476 0.7555

17:09 420.0 70.3 1001 0.508 0.7601

17:22 433.0 70.3 1001 0.540 0.7649

17336 447.0 70.3 1002 0.571 0.7697
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TABLE 6. DATA FOR EXPERIMENT 22a

Clock Elapsed Pressure Temperature Can shrinkage Relative

} time time (min) (MPa) ©) (men) density
| 00:30 0.0 0.0 20 0.000 0.6362
00:40 10.0 0.0 20 0.016 0.6380
| 00:50 20.0 0.0 20 -0.016 0.6345
00:55 25.0 0.0 20 0.016 0.6380
01:30  60.0 0.0 22 0.016 0.6380
01:40  70.0 8.3 29 0.003 0.6368
01:50 80.0 15.4 42 0.013 0.6383
| 02:00 90.0 22.9 49 0.016 0.6388
1 02:10  100.0 30.0 51 0.016 0.6389
‘ 02:20  110.0 33.1 62 0.022 0.6399
02:30  120.0 33.1 103 0.016 0.6404
, 02:40  130.0 33,1 174 -0.003 0.6404
, 02:50  140.0 33.1 253 -0.022 0.6407
03:00  150.0 33,1 332 ~0.041 0.6411
03:10  160.0 33.1 411 ~0.073 0.6401
03:20 170.0 33,1 481 -0.083 0.6414
03:30  180.0 33,1 549 -0.108 0.6409
03:40  190.0 33.1 619 -0.133 0.6405
03:50  200.0 33,1 697 -0.143 0.6423
04:00  210.0 33.1 765 ~0.168 0.6420
04:10  220.0 33.1 827 ~0.181 0.6430
04:20  230.0 33.1 909 ~0.206 0.6433
04:21 231.0 33.1 918 ~0.206 0.6438
04:24 234.0 33,1 939 ~0.204 0.6448
04:25  235.0 33.1 946 -0.203 0.6452
04:27 237.0 33.1 91 ~0.194 0.6468
04:30  240.0 33.1 980 ~0.181 0.6491
04:33  243.0 33,1 999 -0.166 0.6517
04135  245.0 33.3 1013 ~0.156 0.6534
04:36  246.0 33.4 1020 ~0.140 0.6556
[ 04:39  249.0 33.8 1046 ~0.092 0.6623
04:40  250.0 33.8 1049 ~0.076 0.6643
04:42  252.0 33.8 1054 ~0.020 0.6713
' 04:45  255.0 33.8 1054 0.063 0.6816
04:48  258.0 33.8 1053 0.102 0.6864
04:50  260.0 34.0 1048 0.127 0.6893
I 04:51  261.0 34,1 1046 0.138 0.6906
04:53  263.0 34.1 1050 0.159 0.6936
04:55  265.0 34.1 1050 0.181 0.6964
I 05:00  270.0 34.1 1049 0.235 0.7033
05:05  275.0 34.1 1050 0.292 0.7110
05:10  200.0 34.1 1053 0.333 0.7167
l 05:11  281.0 34.1 1053 0.338 0.7174
05:15  205.0 34.1 1052 0.359 0.7201
) |
i




Gl G A D G aEN e e e e ——

TABLE 6.

Continued

Clock Elapsed Pressure Temperature Can shrinkage Relative
time time (min) (MPa) (%) {mm) density
05:20 290.0 34.1 1050 0.394 0.7248
05:21 291.0 34.1 1050 0.399 0.725%
05:25 295.0 34.1 1047 0.419 0.7282
05:30 300.0 34.1 1043 0.445 0.7315
05:31 301.0 34.1 1042 0.447 0.7318
05:35 305.0 34.1 1053 0.457 0.7338
05:40 310.0 34.1 1053 0.489 0.738
05:50 320.0 34.1 1052 0.527 0.7437
06:00 330.0 34.1 1052 0.562 0.7488
06:10 340.0 34.1 1052 0.594 0.7535
06:20 350.0 34.2 1051 0.622 0.7577
06:30 360.0 34.2 1050 0.648 0.7614
06:40 370.0 34.3 1049 0.673 0.7652
06:50 380.0 34.3 1048 0.689 0.7676
07:00 390.0 34.4 1046 0.714 0.7713
07:10 400.0 34.5 1045 0.733 0.7742
07:20 410.0 34.5 1047 0.746 0.7763
07:30 420.0 34,5 1049 0.775 0.7809
07:40 430.0 34,5 1051 0.791 0.7835
07:50 440,0 34,5 1052 0.806 0.7861
08:00 450.0 34.5 1051 0.816 0.7875
08:10 460.0 34,5 1051 0.835 0.7906
08:20 470.0 34.5 1051 0.841 0.7916
08:30 480.0 34.5 1052 0.854 0.7937
08:40 490.0 34.5 1082 0.870 0.7963
08:50 500.0 345 1081 0.873 0.7967
09:00 510.0 34,5 1050 0.886 0.7987
09:10 520.0 34,5 1049 0.892 0.7997
09:20 530.0 34,5 1048 0.905 0.8017
09:30 540.0 34,5 1047 0.908 0.8022
09:40 550.0 34,5 1052 0.918 0.6041
09:50 560.0 37.2 1047 0.908 0.8022
09:52 562.0 40.0 1043 0.908 0.8019
09:56 566.0 45,5 1050 0.908 0.8024
10:00 570.0 51.7 1047 0.908 0.8022
10:02 572.0 55.2 1049 0.911 0.8027
10:05 575.0 60.3 1048 0.914 0.8033
10:06 576.0 62.1 1048 0.918 0.8039
10:09 579.0 68.9 1047 0.930 0.8057
10:10 580.0 72.1 1047 0.933 0.8064
10:13 583.0 8l.4 1047 0.949 0.8089
10:14 584.0 77.2 1050 0.954 0.8100
10:15 585.0 T77.8 1049 0.959 0.8107
10:20 £90.0 80.9 1045 0.99%4 0.8164
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TABLE 6. Continued

Clock Elapsed Pressure Temperature Can shrinkage Relative

|
i
|

time time (min) (MPa) ) (mm) density
, 10:23  593.0 82.7 1042 0.999 0.8171
10:25  595.0 87.3 1045 1.003 0.8180
‘ 10:26  596.0 89.6 1047 1.010 0.8192
10:29  599.0 96.5 1047 1.029 0.8225
10:30  60C.0 99.3 1049 1.035 0.8237
10:31  601.0 102.0 1050 1.042 0.8249
10:35  605.0 100.2 1051 1.070 0.8299
10:37  607.0 99.3 1051 1.083 0.8321
10:40  610.0 98.6 1051 1.102 0.8354
10:43  613.0 97.9 1050 1.119 0.8384
10:45  615.0 97.9 1050 1.130 0.8404
10:50  620.0 97.9 1051 1.149 0.8439
10:53 623.0 97.9 1051 1.159 0.8456
10:55  625.0 97.9 1051 1.165 0.8468
11:00  630.0 97.9 1051 1.197 0.8525
11:10  640.0 99.8 1051 1.222 0.8572
11:20  650.0 101.0 1050 1.251 0.8624
11:30  660.0 100.7 1051 1.286 0.8691
11:40  670.0 100.7 1052 1.311 0.8740
11:50  680.0 100.7 1052 1.327 0.8770
] 12:00  690.0 100.7 1051 1.349 0.8812
! 12:10  700.0 100.7 1052 1.362 0.8838
| 12:20  710.0 100.7 1052 1.384 0.8881
‘ 12:30  720.0 100.7 1051 1.407 0.8924 ;
12:40  730.0 100.7 1050 1.416 0.8942 .
12:50  740.0 100.7 1051 1.435 0.8981 .
' 13:00  750.0 100.7 1051 1.445 0.9000 ;
13:10  760.0 100.7 1049 1.454 0.9018 3
13:20  770.0 100.7 1052 1.464 0.9039 ?
‘ 13:30  780.0 100.7 1051 1.486 0.9084 3
13:40  790.0 100.7 1051 1.505 0.9123 ¥
13:50  800.0 100.7 1061 1.511 0.9144 3
' 14:00  810.0 100.7 1074 1.514 0.9161 i
14:10  820.0 100.7 1094 1.521 0.9190 :
14:20 830.0 100.7 1104 1.546 0.9252 i
' 14:30  840.0 100.7 1134 1.562 0.9311
, 14:40  850.0 100.7 1153 1.616 0.9444
14:50  860.0 100.7 1150 1.654 0.9526
l 15:00  870.0 100.7 1151 1.676 0.9576
15:10  880.0 100.6 1153 1.699 0.9628
15:20  890.0 100.3 1150 1.708 0.9647
. ' 15:30  900.0 100.3 1151 1.714 0.9663 ‘ i
b 15:40  910.0 100.3 1152 1.721 0.9678
: ' 15:44  914.0 100.3 1152 1.721 0.9678
%
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TABLE 7. DATA FOR EXPERIMENT 22¢

Clock Elapsed Pressure Temperature Can shrinkage Relative
time time (min)  (MPa) © (sm) density
01:18 0.0 34.5 40 0.000 0.6272
j 01:27 9.0 34.5 68 0.003 0.6282
01:36  18.0 34.5 139 -0.013 0.6285
01:48  30.0 34.5 236 -0.036 0.6288
01:57  39.0 34.5 310 -0.055 0.6290
01:58  40.0 34.5 317 -0.057 0.6289
02:07  49.0 34.5 387 -0.079 0.6288
02:16  58.0 34.5 451 -0.095 0.6290
02:25  67.0 34.5 520 -0.119 0.6287
02:34  76.0 34.8 589 -0.135 0.6293
02:43  85.0 35.2 658 -0.156 0.6293
02:52  94.0 35.2 727 -0.178 0.6294
03:01  103.0 35.2 788 -0.197 0.6295
03:09  111.0 35.2 846 -0.213 0.6299
03:19  121.0 35.2 917 -0.218 0.6319
03:22  124.0 35.2 938 -0.217 0.6328
03:26  127.0 35.2 966 -0.212 0.6343
03:28  130.0 35.2 988 ~0.191 0.6374
03:37  139.0 35.2 1050 ~0.022 0.6583
03:45  147.0 35.2 1053 0.168 0.6801
03:54  156.0 35.2 1053 0.296 0.6955
04:03  165.0 35.2 1051 0.382 0.7061
04:12  174.0 35.2 1050 0.453 0.7151
04:21  183.0 35.5 1050 0.507 0.7220
04:30  192.0 35.9 1051 0.555 0.7283
04:39  201.0 35.9 1050 0.591 0.7330
04:48  210.0 35.9 1050 0.618 0.7368 %4
04:57  219.0 35.9 1053 0.659 0.7424
05:06  228.0 35.9 1050 0.687 0.7461
| 05:15  237.0 35.9 1051 0.704 0.7484
{ 05:24  246.0 35.9 1050 0.735 0.7528 E
05:33  255.0 35.9 1050 0.758 0.7560
05142  264.0 35.9 1051 0.782 0.7594
| 05:51  273.0 35.9 1051 0.800 0.7620
06:00  262.0 35.9 1052 0.810 0.7635
06:09  291.0 35.9 1051 0.826 0.7656
| 06:18  300.0 35.9 1050 0.845 0.7683
06:27  309.0 35.9 1050 0.861 0.7707
06:36  318.0 35.9 1050 0.875 0.7727
' 06:45  327.0 35.9 1050 0.889 0.7748
06:54¢  336.0 35.9 1050 0.903 0.7768
07103  345.0 35.9 1050 0.914 0.7785
i 07:12  354.0 35.9 1050 0.927 0.7804
07:18  360.0 35.9 1049 0.933 0.7813
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TABLE 7. Continued | 1
j Clock Elapsed Pressure Temperature Can shrinkage Relative
‘ time time (min) (MPa) c) (wm) density
07:27 369.0 48.3 1050 -— —
07:36 378.0 62.1 1046 - -
07:45 387.0 73.1 1045 —-— -—
07:54 396.0 89.6 1046 — —
08:01 403.0 104.1 1050 1.102 0.8071
08:10 412.0 102.0 1049 1,172 0.8182
08:19 421.0 101.4 1050 1.226 0.8269
08:28 430.0 100.7 1050 1.274 0.8348
08:37 439.0 99.3 1050 1.312 0.8412
08:46 448.0 99.3 1051 1.347 0.8473
08:55 457.0 98.9 1052 1.373 0.8517
09:04 466.0 98.6 1053 1.398 0.8562
09:13 475.0 98.3 1052 1.433 0.8621
09:22 484.0 102.0 1051 1.457 0.8663
09:31 493.0 101.4 1050 1.485 0.8712
09:40 502.0 100.7 1050 1.506 0.8751 ,
09:48 510.0 100.7 1051 1.525 0.8786 :
09:57 519.0 100.7 1123 1.538 0.8855 _
10:00 522.0 100.7 1147 1.556 0.8910 ;
10:00 522.5 100.7 1150 1.561 0.8921 7
10:10 532.0 100.7 1150 1,660 0.9110 :
10:19 541.0 100.0 1150 1.722 0.9232 i
10:28 550.0 99.6 1150 1,750 0.9287 :
10:37 559.0 99.3 1150 1,765 0.9318 :
10:46 568.0 99.3 1150 1.773 0.9333 o
10:55 577.0 99.3 1153 1.778 0.9346 4
11:04 586.0 103.4 1149 1.784 0.9356 ¢
11:10 592.0 103.4 1150 1.789 0.9367 &
11:13 595.0 102.0 1150 1.789 0.9367 i
11:22 604.0 101.4 1150 1.7689 0.9367 4
11:31 613.0 101.4 1152 1.789 0.9368 |
. :
t
|
13 l |}
. {
' ' ?
. P
- S ———————men—— - |
s : N

i e y —— A A R o e NI R S I PR I s L SR

T D T Rt G (R st aard

Y 4 N N
SRV PN




13

by the methods described below.

Before experiment 22c, a change was made in the gas supply
Tines for the autoclave. This design change apparently resulted in
stronger gas currents within the autoclave during pressurfzation. The
gas currents disturbed the probe so that reliabie measurements of the
can shrinkage could not be obtained during pressurization from 35.8 to
104.1 MPa. As a result, Tistings of can shrinkage and relative density
are missing for a small portion of the Table 7.

Figures 2 through 7 reproduce in graphical form the tempera-
tures, pressures, and densities in the tables, As expected, major
changes in temperature or pressure cause clearly visible changes 1n the
densification rate.

Conversion of can shrinkage to current relative density also
requires the measurements shown in Table 8. Figure 8 shows the posi-
tions at which the various dimensions are measured. The 1nitial rela-
tive density is obtained from the initial weight, length, and diameter
of the sample. Except for can diameter and length, the initial dimen-
' sfons must be measured before assembly of the can. Most of the final
i dimensions require cutting of the can and sample. While six measure-

‘ wents are necessary to describe the initfal geometry, only four are
necessary after HIP since the gap between sample and can ts gone.

Reduction of data starts with taking data for temperature,
pressure, and can shrinkage from strip-chart records and keying it into
a computer. Data points are chosen so that the discrete points will
provide a good description of the actual experiment. Since the time
interval between the data points is generally small, 1inear {nterpola-
tion is used between readings. Physical dimensions and fnitial density,
as shown in Table 8,are inserted at the beginning of the data file.

The data s converted to densities by a Fortran program that
1s 1isted in the appendix. Before discussing the algorithm used tn the
program, however, it is appropriate to describe the assumptions made and
the estimated error dus to the assumptions.

The intagrated thermal expansions of alumina and stainless
steel are given by
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Temperature (100 C)
Pressure (10 MPRg)

1
0 S0 100 1350 200 230 300 2a
Tiss (min}

Density

° %0 100 180 200 20 00 2b.
Time (ain)

Figure 2. Data for experiment 14. 2a) Pressure (solid 1ine) and
temperature (dotted 1ine). b) Density as calculated from
temperature and can shrinkage.
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Figure 3. Data for experiment 19. a) Pressure (solid 11ne) and
temperature (dotted 11ne). b) Density as calculated from
temperature and can shrinkage.
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Figure 4. Data for experiment 20. a) Pressure (s011d 1ine) and
temperature (dotted 1ine). b) Density as calculated from
temperature and can shrinkage.
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Temperature (100 C)

Density

Figure 5.

Pressurs {10 MPs)
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Data for experiment 21.

temperature (dotted 11ine).

a) Pressure (sol1d 1ine) and
b) Density as calculated from

temperature and can shrinkage.

Density curve clearly shows

effect of changing pressure from 34 to 70 MPa at 330 min.
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Figure 6. Data for experiment 22a. a) Pressure (so11d 1ine) and i i
temperature (dotted 11ne). b) Density as calculated from i
temperature and can shrinkage. Density curve clearly shows
effect of changing pressure from 34 to 100 MPa at 580 wmin
and changfng temperature from 1050 to 1150°C at 830 min. ;
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effect of changing pressure from 36 to 1oo°m at 390 min
and changing temperature from 1050 to 1150°C at 520 min.
Density is not totally relfable between 361 and 396 minutes.
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TABLE 8. PHYSICAL MEASUREMENTS OF HIP SAMPLES AND CANS

Measurement, mm Run number

{except density) 14 19 20 21 22a 22¢
Initial sample length 39.67 39.68 39.70 39.66 39.67 39.67
Inftial can length 51.32 52.24 49.90 50.91 50.82 50.95
Final can length 46.82 47.90 45.26 49,04 46,35 46.50
Initial end plug length 11.10 11.13 9.45 10,97 11.10 11.10
Final end plug length 11.69 11.60 10.08 11.16 11.79 11.64
Infitial sample diameter 22.00 22,00 22.00 22.00 22.01 22.01
Initial can diameter 25.39 25.37 25.38 25,36 25.37 25.37
Final sample diameter 23,28 23.85 23.33 24.53 23.11 22.88
Initial can wall thickness 1.57 1.57 1.57 1.57 1.66 1.66
Final can wall thickness 2.12 1.98 2.08 1.83 2.18 2.11
Initial relative density .6562 .6556 .6556 .6549 .6370 .6374
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€A1203 = 7,2978E-6 (T-293) + 7.8486E-10 (T-293) (T-800) (la)
€304ss = 1.7751E=5 (T-293) + 5.0423E-9 (T-293) (T-800). (1b)

In these equations, we have used E to denote multiplicatfon by the
specified power of 10, following the standard computational convention,
Note that these are are the integrals of the ordinary coefficients of
Tinear thermal expansion. These equations were obtained by fitting a
quadratic to data compiled by Toulouk{an(l),

Thermal expansion will also affect the geometry of the probe
mechanism itself. Quite a few thermal effects might be anticipated.

The probe rods will change 1n length and diameter both above and below

the pivots. The pivots themselves will expand and move. The sample

will be displaced as 1ts supporting structure expands. Where the tem-

perature gradient has a component normal to the axis of the probe rods,

the rods will deflect. It is not feasible to perform . . accurate calcu-

lation of all the thermal expansion effects, so 1t would appear that the

best approach to this problem would be to calfbrate the probe carefully

against a dummy sample of some non-densifiable mater{al with 2 well-

known coefficient of thermal expansfon. Even 1f such a calibration were

performed, there might still be unconsidered effects from thermal tran-

stents. Our calculations to date have used the simple approach of

assuming that all these thermal expansfons have a negligible net effect

on the measured can diameter. This assumption is supported by the -
apparently small systematic errors in the final calculated densities
when compared to {mmersion densitifes, as discussed below.

It 1s assumed that the material of the can is always at full
density and that the mass of the sidewall of the can is constant. The
stainless steel can {s rather soft at HIP temperatures, so fncompatibfl-
ity of thermal expansion between sample and can 1s handled as follows:
For any given density, the alumina 1s assumed to expand isotropically
upon heating. The can expansion cannot be {sotropic, however, since 1t
expands faster than the alumina, and the applied gas pressure will keep
the can 1n contact with the sample. Our assumption that the mass of the
sidewall is constant {s equivalent to assuming that the can does not l
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s1ip axially along the sample, and that the extra thermal expansion of
the can 1s taken up as a plastic thickening of the can wall., Using the
final dimensions from can 14, the combined thermal expansion of the sam-
ple and can upon heating from 20°C to 1150°C wi11 be 0.378 mm. This
corresponds to a change in the relative density of 0.08, which s typi-
cal. Thermal expansion 1s undoubtedly the most {mportant single correc-
tfon in the conversion of probe readings to densities.

For a fixed density (expressed as fraction of theoretical den-
sity) 1t 1s assumed that the thermal expansion of alumina 1s {isotropic.
However, experimental measurements show that the length-to-diameter
ratio of the sample changes as the densfty changes. Diameter {s
recorded continuously, but length {s measured only at the beginning and
end of the run. Therefore, 1t 1s necessary to assume some relationship
between the length and diameter during the run. It 1s currently assumed

that
L{0,20) . d{e,ZOQ ¢
Pis d pi,20 (2)

wvhere d(p, 20) and L(p, 20) denote the sample diameter and length,
respectively, at the fractional density in question and 20°C. The sub~
script 1 denotes an initial value. The exponent o is set by the initial
and final measured lengths and diameters of the sample. A typical value
of a 1s 0.85. This 1s not far from the 1deal value a = 1.0, which
describes a constant length-to-diameter ratio.

The assumption of Equation 2 {s essentially arbitrary, and
other relations such as

L(0,20) - L(pj,20) _ dfp,20) - d(py,20)
Hpiszo) h L(Pf! 20) " d(pf,ZO) - d(pinZO) (3

might be suggested, where the subscript f denotes a final valve. Using
the measurements from experiment 14, one finds that, for any diameter
between the initial and fina) diameter, the maximum discrepancy in cal-
culated sample length as given by Equations 2 and 3 1s about 0.013 mm.
This corresponds to an error in density of less than 0.04%, which is
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neglfgible In our experiments.

It 1s assumed that the {nitial gap between the sample and the
can shown in Ffgure 8 vanishes during HIP. Thus the final sample diame-
ter is the final outside diameter of the can minus twice the final can
wall thickness, and the final sample length 1s the final can length
minus the length of the end plugs. This assumption 1s supported by
examination of the samples; no gaps were found after HIP. A thin reac-
tion layer consisting of oxides of aluminum, 1ron, chromfum, and nickel
was detected between the alumina sample and the stafnless steel can.
Measurements of the reaction layer indicate that an error of less than
0.05% results from ignoring the layer,

Using these assumptions, the program proceeds in the following
way. For a given time, the pressure, temperature, and shrinkage are
measured, and the actual outside diameter of the can 1s calculated by
subtracting the shrinkage from the original size. Then the problem is
attacked from the other direction: A fractional density {s assumed, and
the diameter and length of the sample at 20°C are calculated by means of
Equation 2. Using Equation la, the dimensions of the sample at tempera-
ture are calculated. The volume of the can sidewall at 20°C is
corrected for temperature by converting the 1{near expansfon of Equatfon
1b to a volume expansion, and the necessary wall thickness to produce
that volume 1s calculated. For the assumed density, the outside dfame-
ter of the can will be the sample diameter plus twice the wall thick~-
ness. The program repeats this process with different values of density
until 1t finds an outside diameter which 1s equal to the actual outside
diameter of the can. As output, the program produces a table in which
each 1ine contains time, temperature, pressure, can shrinkage, and rela-
tive density. Plots 1ike those of Figures 2 to 7 are readily made by
passing selected columns to a plotting package.

One difficulty with this approach is that different methods
for measuring the volume of the can sidewall give dffferent volumes.

The volume of the sidewall at 20°C s given by

V = mw(D-w)L 4

rereumppteg
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where w 1s the sfdewall thickness, D 1s the outside diameter of the can,
and L s the Tength of the sfidewall, all measured at 20°C. It 1s rea-
sonable to assume that the volume of the sidewall as measured at 20°C {s
constant, that 1s, that the mass of the sidewall 1s constant. The
sidewall volume may be logically defined in at least three ways: 1. w
may be assumed to be the initfal can wall thickness, D may be assumed té
be the inttfal outside diameter of the can, and L may be assumed to be
the initial can length minus the fnitial length of the end plugs. 2. w
may be assumed to be the 1nitial can wall thickness, D may be assumed to
be the initial outside diameter of the can, and L may be assumed to be
the initial sample length. 3. w may be assumed to be the final can wall
thickness, D may be assumed to be the final outside diameter of the can,
and L may be assumed to be the final sample length. Note that the
length used in method 1 1s longer than the length used fn method 2, the
difference being the length of the air gaps at the end of the sample.
Method 3 differs from the others by using final measurements instead of
initial measurements. Table 9 shows the sidewall volumes as determined
by each of the three methods just described. As expected, the volumes
determined by method 2 are consistently smaller than those determined by
method 1, since method 2 assumes a s1ightly longer sidewall. However,
there 1s no apparent relationship between the volumes obtained by method
3 and those obtained by methods 1 or 2. The discrepancies between the
various volumes are unexpectedly large. The choice of the sidewall
volume affects the density that is calculated from the can shrinkage.
For the data obtained to date, the three methods for measuring sidewall
volume can yield calculated relative densities that differ by as much as
4.6%. The choice of the correct can sidewall volume {s an important
unsolved problem. It must be studied in more detail 1f the probe 1s to
provide more accurate values of density.

We have used method 3 to obtain the sidewall volume, since
this method requires no assumptions concerning the nature of the col-
Tapse of the can onto the sample. As shown in Table 10, there has gen-
erally been good correlation between the final density as calculated
from the probe data and as measured by immersion. If experiment 22c 1s
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TABLE 9. CAN SIDEWALL VOLUMES AS DETERMINED
BY VARIOUS METHODS

Sidewall volume, cm3

Run Method 1 Method 2 Method 3
14 4.73920 4.67457 4.96023
19 4.83961 4.67128 4.94096
20 4.76382 4.67497 4.88847
21 4.69937 4.66738 4,95432
22a 4.92189 4.91686 4.95809

22¢ 4.93921 4.91686 4.80638
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’ § TABLE 10. COMPARISON OF FINAL DENSITIES AS
CALCULATED FROM PROBE DATA AND
AS MEASURED BY IMMERSION

Experiment Final Density Difference
Number Cale. Meas.
14 .9576 .960 ~.002
19 8712 .876 ~.005
20 .9678 .952 .016
21 7697 .758 .012
22a .9678 .984 -.016
22¢ .9368 1.000 -.063

e«
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excluded, the root-mean~square difference between the calculated and
immersion densities is 1.38. There 1s no evident systematic error, so
our assumptions concerning thermal expansion appear to be justified.

The unusually large discrepancy for experiment 22c has not
been explained completely. It 1s known that there were certain {rregu-
larities in the experimental procedure. For cxample, a relfable cali-
bration of the probe to the inftial diameter of the can was not obtatned
due to equipment difficulties during pressurization. We have included
the data for this experiment, however, since the changes in density
should be relfable even though the values are systematically in error.
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THEORY OF DENSIFICATION

In this section a theory of densification by grain-boundary
diffusion with interface reactfon control 1s developed. We discuss the
role of grain-boundary dislocations in 1imiting the rate of grain-
boundary diffusion and review the geometry of interparticle necks and
the effect of neck geometry on the effective contact stress. We present
the results of comparing this theory of dens{ficatfon with experimental
data and argue that interface-reaction controlled grain-boundary dfffu-
sion {s the mechanism that best explains the data. Limitations of the
theory and potential for future development are discussed. A glossary,
Table 11, 1s provided as a quick reference for the variables used in
this section.

Densification by grain-boundary diffusfon has been thoroughly
treated in the 11terature. The effect of grain-boundary dislocations in
1imiting gratn-boundary diffusion has also been discussed, though usu-
ally with regard to creep rather than densification. The effect of
gratn-boundary dislocations may be pictured roughly as follows. Con-
sider two particles in a sample that is densifying by grain-boundary
diffusion. Densification occurs when matter flows from the contact area
between the two particles to the surface of the neck, and the two parti-
cles approach each other. Under certain conditions, the rate determin- «
ing step 1s not diffusion but the detaching of atoms from the grains.

The energetically favored place for an atom to detach from a grain is at

a grain-boundary dislocation. If the two grains were separated. the s
grain-boundary dislocations would be ledges on the new surface. As den- i
sification proceeds, the di{slocation climbs along the grain boundary. ?

As shown in Figure 9, solute atoms tend to segregate to the dislocation, .
and climb may be 1imited by solute drag 1f the diffusivity of the solute ) )

is Tow.

The terminology "interface~reaction controlled” 1s actually a ?
misnomer. While it is true that the amount of mass transport by grain-
boundary diffusfon 1s Yimited by the difficulty of moving grain-boundary ‘
dislocations, the actual rate-1imiting process is the diffuston of i
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TABLE 11. GLOSSARY OF TERMS

a average neck area
b Burgers vector

b component of Burgers vector normal to grain boundary

c derivative of coordination number with respect to R'/R, ¢ = 15.5
bulk solute concentration

1 constant, C, = 0.5

relative density

initial relative density

relative density of random dense packing, Do = 0.64

D: diffusivity of solute at infinite temperature

diffusivity of solute

activation energy for diffusion of solute

force per unit length on dislocation

D

E

F

G shear modulus
k Boltzmann's constant
M dislocation mob{il1ty
external pressure

p* effective contact stress

Pe contact pressure due to surface tension

Pen threshold contact pressure

e

, mmill VNN AUEN MY ey A ) SRR GG e e D GO D) D AR W o e
-]




31

TABLE 11. Continued

R?

particle radius

current particle radius in Arzt's growing-sphere description

gas constant

temperature

time

dislocation velocity

neck axial radius of curvature

particle center-to-center distance

coordination number

coordination number at D, Z = 7.3

constant, a, = 0,2

ratfo of solute concentration near dislocation to solute
concentration in bulk

surface tension

dislocation density

effective atomic volume of solute
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Figure 9, Grain boundary dislocation with an atmosphere of solute
atoms. As the dislocation climbs along the grain boundary,
solute atoms exert a drag force.
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solute {n the lattice. The motion of 2 small number of solute atoms in
the lattice can result in a large number of atoms being freed from a
grain-boundary dislocation. Once they are free from the dislocation,
the atoms quickly diffuse away.

Following Arzt, Ashby, and Verral1(2), the rate at which an
individual grain boundary dislécation climbs {s "

Vdis = MF = Mp*bn. (5)

Here F is the force per unit length on the dislocation and M 1s the
dislocation mobility. From elementary dislocation theory, it follows
that the force on the dislocation 1s the product of the effective con-
tact pressure p* and the component of the Burgers vector normal to the
grain boundary b..

Applying the results of Cottrell and Jaswon(3) and Cot-~
tre11(4), Arzt, Ashby, and Yerrall obtained the following expression for
grain~boundary dislocation mobility 1imited by solute drag:

(6)
DSQ

2
b
In this equation, C, 1s the concentratfon of solute in the lattice, and
the concentratfon fn the solute atmosphere of the di{slocatfon {1s
increased by a factor 8 to B8C,. Dg is the diffusivity of the solute 1n
the lattice, 0 is the effective atomic volume of the solute, kT has its
usual meaning, and b, 1s the Burgers vector of the grain-boundary dislo-
cation,

M=

BkTb Co

To complete the description of a grain-boundary with disloca-
tions we need only an expression for the density of dislocations. This
problem has been studied by Burton(5) and by Arzt, Ashby, and Ver-
ra11¢2), Although different approaches were used, their results are in
substantial agreement. Arzt's result 1s

clp* n ‘
p = GEE— ; '

where Cl 1s a constant (about 0.5), G 1s the shear modulus, and by is

/
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the length of the Burgers vector.

Before proceeding further, it {s necessary to consider again
the geometry of densification at the scale of complete grains. The most
important geometrical quantities are {llustrated in Figure 10: R 1s the
particle radius, y is the particle center-to-center distance, x {s the
neck radfus, and w fs the neck axfal radius of curvature. If 1t is
assumed that the sample starts as a packing of tangential spherical par-
ticles and that the particles approach each other as densification
proceeds, 1t {s clear from geometry that

D = Dy (2R/y)3 (8

where D, 1s the initial density and D is the current density. By dif-
ferentfating Equatfon 8, one obtafns

b _ _ 3D <D )‘/391 (9)

at - - =w\5,) @t

where dy/dt {s the rate of change of the particle center-to-center dis-
tance. This result 1s at varfance with Equation 2 of Arzt, Ashby, and
Easter11n9(6). Their result can be derived from the assumption that

D = D (y/2R)3. Qo

This equation s clearly incorrect; 1t predicts a decrease in density as
the particles move toward each other. Our Equations 8 and 9 correct
this error,

A change in y results from the motion of grain-boundary dislo-
cations. The passage of one dislocation across the entire neck reduces
the center-to~center distance y by b, where b, is the component of the
Burgers vector normal to the grain boundary. In the case where several
dislocations are moving together, the number of dislocations that will
pass a given point on the grain boundary 1n unit time 1s vy4.0. Thus
the rate of approach of two particles s

(11)
dy/dt = - vdispbn

It has been iIndicated in Equation 5 that the driving force for
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Figure 10. Geometry of two spherical particles and a torofdal neck. ’ :
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densification 1s the effective contact pressure p* between the two par-
ticles. Following Arzt, Ashby, and Easter1ing!6), we write this pres-
sure as

2 12
- 4nR7p -
P* =370 * Ps = Py

where p 1s the external applied pressure, a 1{s the average neck area, Z
1s the coordination number, pg is the contact pressure due to surface
tension, and py, is a threshold pressure below which the grain-boundary
dislocations cannot move. Since our material was thoroughly outgassed
before canning and the cans welded in vacuum, the effect of gas trapped
in the pores 1s neglected.

Coordination number and contact area have been treated {n some
detail by Arzt{7). For mathematical convenience, Arzt describes dons{f-
ication not as a packing of spheres that approach each other but as a
packing of stat{onary spheres that grow fictitiously. If the spheres
grow from a radius R to a radfus R', the increase in the volume of the
spheres will cause the density to increase from its initial value Dj to
a new value D, where

— T .27 -

D/Dy = (R'/R)3. (13)

As the spheres begin to grow, it is evident that they must
deform to keep from overlapping with their neighbors. Arzt has treated
this problem 1n the following way. At the beginning of densification,
space 1s partitioned into Voronoi cells, as shown in Figure 11. The
Yoronol cell of a given particlie consists of all points that are closer
to the center of that particle than to the center of any other particle.
Since 1t has been assumed that the particles are statiorary, it is also
reasonable to assume that the Yoronoi cells do not change during densif-
ication, Let us consider a single sphere as shown {n Figure 12. The
sphere is tangent to the boundary of its Yoronoi cell at any point where
f 1t coordinates another sphere. If we now imagine the sphere growing
without deforming, parts of the sphere will fall outside the Voronol
cell, as shown 1in Figure 12b. At the same time, we must also imagine
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Figure 11. A two-dimensfonal schematic of a random packing of spheres
and their Voronoi cells, after Arzt.

Figure 12. A typical particle in a random dense packing and its
Yoronoi cell, after Arzt. a) No densification has occurred.
b) The particle grows fictitiously without deformation to
radius R', overlapping neighboring particlies. To prevent '
overlap, deformation of the particle occurs, with material
befng distributed either c) uniformly over the free surface
or d) in necks around the contact region.
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the coordinating spheres growing. These spheres will also grow beyond
their fixed Voronoi cells, and the spheres will overlap. Real particles
do not overlap during densification, so it s clear that some deforma-
tion of the spheres must take place. Arzt has assumed that when a
sphere grows to the point that part of its volume would be outside the
Voronoi cell boundary, the sphere deforms so that the materia) which
would fall outside the cell s redistributed ins{de the cell. Under
this assumption, one may think of the sphere as growing inside a rigid
Yoronoi cell. The assumption is actually quite reasonable. Wherever
sphere A would grow past its cel) boundary into the cell of sphere B,
sphere B would also grow past 1ts cell boundary into the cell of sphere
A. Since the two spheres are identical, they would force each other to
remain within their respective cells.

Arzt considered two ways in which the material wmight be redis-
tributed when the spheres deform. Figure 12c shows the material uni-
formly spread over the free surface of the particle. This would be
realistic for cold compaction of a ductile powder. Figure 12d shows the
material deposited only in the necks. We have assumed that all dis-
placed material remains 1n the necks, since it 1s expected that surface
tension would result in a well-rounded neck 1tke that shown in Figure
12d rather than a sharp neck 1ike that in Figure 1l2c.

As the spheres continue to grow, they begin to coordinate
additional spheres that they did not coordinate in the orfiginal packing.
Using radfal distribution functions for a random dense packing developed
by scott(®) and Mason(9), Arzt developed the following approximate equa-
tion for the coordination number

Z=2,+c(RV/R=1) aa

wvhere Z, = 7.3 and ¢ = 15.5. The necks which result from the original
sphere contact points will be larger than the necks which form later.
Taking this fact into account, Arzt has derived the following equation
for the average contact area 1f al) material remains in the necks:

a = 11(Z (R = 1) + c(R' - DZ/2)R/ZR (15
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With this i{nformation, the first term of Equation 12, the effect of
external pressure, may be evaluated.

Following Arzt, Ashby, and Easterling“’. the contact pressure
due to surface tension 1s

(16)
Ps = Y(% B ]7)

where y 1s the surface tensfon. The average neck area 1s known from
Equation 15, so simple geometry will give the neck radius

x = Vafa an

A reasonable approximation to the ax{al radius of curvature of the neck
is given by

W= x2/(R = 2x). (18)

This equatfion is not strictly consistent with Equatfon 15. Equation 15
describes a neck between two “overlapping" spheres 11ke the one shown 1n
Figure 13a: the materfal 1in the neck comes from the volume that the
spheres would overlap 1f they were complete. Equation 18 describes the
simpler geometry of Figure 13b for two “tangent™ spheres: the material
in the neck 1s supplied from some unspecified source. The inconsistency
between these two approaches 1s judged to be insignificant for the fol-
Towing reasons: First, w affects only Pgs which will be shown later to
be of secondary importance in determining p*. Second, Pg is uncertain
since the surface tension is not well known. Third, both approaches
assume a toroidal neck., Necks of this type are shown in the axfal
cross-sections of Figure 13: the profile of the neck surface is circular
and tangent to both spheres. A torotdal neck {s mathematically con-
venient, but this geometry would not be expected in a kinetic system.
For these reasons, it 1s concluded that the expressions for w, x, and p,
are at best rather rough approximations.

The threshold contact pressure for motion of a gratn boundary
dislocation 1s also uncertain, since it depends on the Burgers vector of
the dislocations and the type of dislocation sources. We have chosen to
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Figure 13. Two descriptions of neck geometry. a) The material in
the neck comes from the spheres. The soltfds of revolution
denoted by A and B-B have the same volumes. b) The material
in the neck (B~B) comes from an unspecified source.
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use the approach of Arzt, Ashby and Verrall. The threshold stress for
grain boundary dislocation motion 1s

i /2 o G, (19)
Ph = Tx

where a = 0.2 is a constant which reflects the relative amount that the

length of a dislocation must change in order to move.

As indicated in Equatfon 12, the effective contact pressure {s
the sum of three terms, which result from the externally ppplied pres-
sure, surface tension, and the threshold stress for gratin-boundary
dislocation motion. Let us use the following data to calculate the mag~
nitude of each of these effects. As suggested by SEM photographs of the
fractured HIP specimens, let us use a particle radius R = 0,35E~-6 m. A
surface tensfon vy = 1 3/m? s typical for ceramics. The data of Rysh-
kewitch¢10) suggest the following equation for the shear modulus:

G = 12.38269 (1838.5-T)"/3 pa (20)

for temperatures less than 1800 K, where T 1is the temperature in kel-
vins. We have used a Burgers ve:tor for lattice dislocations of b =
4.75E-10 m (for s11p on the {0001) <1120> basal system)‘11), and, fol-
Towing Arzt, Ashby, and Verrall‘2), tet by = b/3. Z. ¢, and @, as
specified in Table 11.

Figure 14 shows the three terms of the effective contact pres-
sure as functions of density. These curves were calculated for a tem-
perature of 1150°C, but they depend only weakly on temperature. For the
sake of completeness, the curves have been plotted over a density range
from 0.65 to 0.995, even though the theory is not strictly valid over
this entire range, as discussed below. The effect of surface tension is
small relative to the effect of external pressure for all pressures con-
sidered. At low densities, the magnitude of the threshold pressure is
comparable to the pressure due to surface tensfon. At a density of
0.70, an external applied pressure of 69 MPa (10000 psi) will produce a
contact pressure of 507 MPa. Surface tension effects provide an addi-
tional 30 MPa of contact pressure, and the threshold pressure is 37 WPa,
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Figure 14. Contributfons to the effective contact pressure from
three sources as functions of density: external pressure
(so11d 1ines), surface tension (dotted 1ine), and threshold
for grain=boundary dislocation motion (dashed 1ine). From
bottom to top, curves for external pressure are for 34 MPa
(5000 psi), 69 MPa (10000 psi), and 103 MPa (15000 psi).
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so the effective contact pressure 1s 500 MPa. At high densities, the
magnitude of the threshold pressure can be a significant fraction of the
contact pressure due to the applied external pressure. Extending the
previous example, at a density of 0.90, an external applfed pressure of
69 MPa will produce a contact pressure of 99 MPa, surface tensfon
effects will provide only 2 MPa of contact pressure, and the threshold
pressure will be 20 MPa, producing an effective contact pressure of 81
MPa. If the external pressure is cut in half, the effective contact
pressure drops to 32 MPa.

The total effective contact pressure due to all three terms is
shown in Figure 15. For comparison, the bottom curve ts drawn with no
external pressure, corresponding to ordinary sintering. Note that the
effective contact pressure crosses zero at a density near 0.69, predict-
ing that sintering would stop at this density. This density will depend
on the value chosen for the surface tensfon and the assumptions concern-
ing neck geometry and threshold stress for dislocation motion. The
theoretical prediction of 1imited sintering 1s supported by our work on
sample preparation. Before HIP, the samples were sintered for 3 hours
at 1100°C. The relative densities obtained were typically about 0.65;
Table 8 11sts the measured initfal densities.

As an initfal test, 1t 1s useful to ascertain that the theory
does not require physically unrealistic values for any of its parame-
ters. Combining Equations § to 7, 9, and 11, we may write

—

f

2 2 \r

do _ 300 V/3(a) P*C400 (21 _
dt ~ 2R\Dy/ \bp/ GbpBkTC, _.

With the exception of Ds. rough estimates can be made of all of the

variables in this equation. Following Arzt, Ashby, and Verrall, we may (
take by, = b/3, b, = by/vZ, and 8 = 10. The value of & 1s unknown, since ;
1t 1s presently not known what solute might be responsible for control- '
1ing the motion of grain-boundary dislocations. However, a reasonable
estimate is 2 = 2.15E-29 w3, which 1s half of the volume of the formula
unit. To compare theory with experiment, let us dupliicate the condi- '
tfons at one point in experiment 19. At an elapsed time of 269 minutes,
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Figure 15. Total effective contact pressure as a function of
density at various levels of applied external pressurs. From
bottom to top, curves for external pressure are for zero
pressure, 34 MPa (5000 psi), 69 MPa (10000 pst), and 103 MPa
(15000 psi).
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we find that D = 0.8, T = 1273 K, p = 103 MPa, and the densification
rate dD/dt = 1.6E-5 s~1. When all these values are substituted into
Equation 21, we find that, for the theory to agree with the experiment,
we must have D, = 1.2E-21 m2/s. This is not an unreasonable dif-
fusivity, so for this one piece of data, it has been shown that agree-
ment between theory and experiment can be achieved with physically rea-
sonable values for the parameters. It will be shown below that these
parameter values are typical of those obtained by curve-fitting.

Although the controlling solute species 1s not known, it 1s
possible to measure the activation energy for solute diffusion, E;. By
comparing the rates of densificatfon at 1050°C and 1150°C, we obtafned
the values E. = 316 kJ/mol for experiment 22a and Eg = 263 ki/mol for
experiment 22c, or an average value of 290 kJ/mol. Since some change in
density occurred while the temperature was rising, a better value for Eg
would be obtatned 1f the measured dens{fication rates were corrected for
the density change. Unfortunately, a meaningful correctfon could not be
made on the data for either experiment. In the case of experiment 22c,
1150°C was not reached until the probe indicated a density greater than
0.94. This density is well into the final stage, and we have not yet
extended the theoretfcal model to the final stage. In experiment 22c,
1150°C was reached when the probe indicated a density of about 0.89,
but, as discussed in the previous section, the calculated densities for
this experiment are probably several percent below their actual values.
Since the actual densities are not known, a reasonable correction for
effect of density cannot be made. Since the change in density was
small, however, the density correction is expected to have only a minor
effect on the calculated activation energy.

An additional value of the activation energy, E, = 419 ki/mol,
was obtained by comparing the data for experiments 19 and 20. This
value 18 expected to be less accurate than those given above since it
would be affected by any variations from sample to sample.

To compare the predictions of theory with the measurements of
experiment, we have solved the differential equatfon for denstfication,
Equatfon 21. A Runge-Kutta method‘12) was used along with experimental
records of external pressure and temperature as 1isted in Tables 2 to 7.
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Linear interpolation was used between tabulated points. For the pur-
poses of integration, 1t is convenient to recast Equation 21 as follows:

@ _ 0}/ pPexp(Es/RT) (22)
a " 0g,) —w — "
where R 1s the gas constant and n is given by
2 0
n= 3_<P_"> 402 (23)
2R \by, bkaCo

In Equatfons 22 and 23, we have broken down the solute diffusivity using
the standard Arrhenius equation

D, = 00 exp(-E/KT) (24)
where Dg is the preexponential factor for the diffusivity of the solute
and R fs the gas constant. We have defined n so that it collects the
parameters that were not determined by our experiments. Except for n,
all the variables in Equation 22 have known values: the init{al density
O,» the temperature T, and (through Equation 12) the effective contact
pressure p* all come from th: -perimental data, the shear modulus G
comes from the literature, and the activation energy for solute diffu-
sfon E; was determined by experiment as discussed above.

We have used n as the single adjustable parameter in fitting
Equatfon 22 to our data. It is appropriate to treat n as adjustable,
since n contains several variables that have not been determined, such
as bb and Q. We also used different values of n for di{fferent samples,
s0 the theory has been applied to each experiment independently rather
than to all six experiments as a group. This {s also appropriate since
n contains the preexponential factor for solute diffusion DS, the solute
concentration Co. and the ratio of dislocation atmosphere concentration
to bulk concentration g8, all of which are probably subject to signifi-
cant sample-to-sample variation.

The tnitial condition for Equation 22 is

0(t=0) = D,,. (25)
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This was the initial condition normally used in our integrations. In
the integrations for experiments 22a and 22c, however, Equation 25 could
not be used. When the density D = Dr’ the geometrical description of
the contacts between individual particles breaks down, predicting a zero
contact area, a = 0. Equation 12 then gives an infinite effective con-
tact pressure. For experiments 22a and 22c, Dy < Dp. It was therefore
necessary to choose the initial condition so that D(t=0) > Dr' even {if
the measured Initial density was lower than Dr‘ We chose to {ntegrate
with an initial density of 0.641.

The choice of the initial condition {s relatively unimportant.
This can be seen in Figure 16. Two {ntegrations were performed using
the temperature and pressure data for experiment 14. For one integra-
tion, the inftfal condition was as speciffed by Equation 25. For the
second integration, we arbitrarily chose D(t=0) = 0,70. The same value
of n was used in both cases. From Figure 16 it can be seen that even a
relatively large change in the 1nitial condition rapidly disappears at
densification proceeds. The reason for this is straightforward. If
temperature and external pressure are held constant, the densif{catfon
rate decreases very strongly as the density increases from 0.64 to 0.7.
It follows that a change in the initfal density will largely disappear
when significant densification begins.

Comparisons between data and experiment are shown in Figures
17 to 22. In these figures, the experimental densfty curves of Figures
2b to 7b are redisplayed along with theoretical density curves. The
agreement between theory and experiment 1s evident. The values of n
used for all of these calculations are relatively close, differing by at
most a factor of 6. This 1s considered to be acceptable agreement.
Since n is dependent on Co. any variations between samples in the con-
centration of the rate-controlling solute will show up as a change fn n.
In addition, a change in the concentration of some other tmpurity may
affect DS or 8, and thus change n.

A11 of the values for n correspond to physically reasonable
choices of Dy, by, 2, etc. This can be seen by a comparison with the
sample calculation above. As has been argued, the values of the
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Figure 16, Effect of initial density on calculated density history.

The dotted 1ine was calculated with initial density 0.7, . '
the dashed 1ine with {nitial density 0.653. For both curves,

n = 84, The temperature and pressure histories of

experiment 14 were used.
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Figure 17. Comparison between experiment and theory for experiment
14. Solid 1ine 1s experiment, dotted 1ine 1s theory.
Theoretical curve was calculated with n = 8E4.
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Figure 18. Comparison between experiment and theory for experiment
19. Solid 1ine 1s experiment, dotted 1ine is theory.
Theoretical curve was calculated with n = 3,2E4,
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Figure 19. Comparison between experiment and theory for experiment
20. Solid 1ine is experiment, dotted line is theory.
Theoretical curve was calculated with n = BE4.
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Figure 20. Comparison betwesn experiment and theory for experiment
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Theoretical curve was calculated with n = 1. 4E4,
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parameters used in the sample calculation are reasonable, and they
correspond to n = 3,6E4. To provide the best description of all the
data of experiment 19, we used n = 3,2E4. In efther case, these values
of n are typical of those obtatined by curve-fitting for all of the six
experiments, so the values of n used in the integrations also correspond
to physically reasonable choices of the parameters.

A number of densification mechanisms have been discussed in
the 1iterature, including lattice and grain-boundary diffusion and climb
and glide of dislocations. None of these mechanisms describes the
results of our experiments as well as does the theory of interface-
reaction controlled grain-boundary diffusion described above. A summary
of the characteristics of each of these mechanisms 1s shown in Table 12.
YValues of activation energies for diffusion come from Mohamed and Lang-
donf13), A1 of the diffusional mechanisms fail in that they do not
predict the correct dependence of densification rate on pressure, Stu-
dies of data for experiments 21, 22a, and 22c indicate that densifica-
tion rate varfes 1ike p™ where p 1s the external pressure and the pres-
sure exponent m 1is between 2 and 2.2. By contrast, the diffusion-
controlled mechanisms all predict a pressure exponent of 1. The dislo~
cation mechanisms also fail, although they predict a pressure dependence
which {s stronger than that of interface-controlled diffusion. There 1s
also no notable agreement on activation energfes, although the energfes
for grain-boundary diffusfon are moderately close. The activation
energy for dislocation climb fs too high. The activation energy for
dislocation glide depends on the siip system, but at the temperatures
used 1n our experiments (1000 to 1150°C) only the basal slip system is
active, so slip could contribute only a small amount of densification.
The most logical explanation of the data, therefore, is that densifica-
tion occurs by Interface-reaction controlled grain-boundary diffusion.

As 1t presentl)y stands, the theory described above would be
expected to break down outside the density range 0.65 to 0.9, At densi-
ties below D, the picture of a random dense packing is inadequate to
oxplain the density, and the structure of an aggregated or agglomerated
powder becomes important. Densification of an agglomerated powder would

'
i
i
i
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FOR DENSIFICATION

TABLE 12. COMPARISON OF VARIOUS MECHANISMS

I
‘ Pressure Activation Energy
Mechanism Exponent (kd/mol)
- Lattice Diffusion
H A1 Control 1 478
0 Control 1 637
Grain Boundary Diffusion
Al Control 1 419
0 Control 1 226
Dislocation Climb A~ 3 637
Dislocation Glide ~ 5 ?
Interface-Reaction- 2 ?
Controlled Diffusion
Experiment 2.1 290
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be difficult to model, but it also appears that it is unnecessary to
model 1t since HIP would tend to break down the agglomerates. When the
density is only slightly above D., the theory is subject to doubt
because 1t predicts extremely high effective contact pressures. At high
densities, the primary difficulties appear to be geometrical. Perhaps
the most important effect 1s that the pores begin to close, typically at
a density near 0.9, and a completely new description of the pore
geometry is needed. It should be noted, however, that the theory 1s in
good agreement with experiment to densities as high as 0.95. From an
empirical point of view, the model is useful in the density range 0.9 to
0.95 even 1f 1ts theoretical justification 1s doubtful. To overcome
these difficulties, we currently plan to extend the model to the final
stage in the coming year.
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APPENDIX

The following pages contain a listing of a

Fortran program to convert measurements of

can shrinkage into relative densities,

given the initial can geometry. The program

includes correction for thermal expansion i
and thickening of the can wall. Lo
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program probdens

This program converts probe readings and temperatures to sample
densities.

key to varfable names
1 = Tength

d = diameter (outside)
w = wall thickness

real 1 init sample, 1 finl sample, 1 1init can,

1 finl can, 1 init plugs, 1 finl plugs

common /sizes/ 1 init sample, 1 finl sample, 1 init can,
1 finl can, 1 init plugs, 1 finl plugs, d 1nit sample,

d finl sample, d init can, d finl can, v init can,

w finl can, density init, alpha

character*20 text

time 1s 1n minutes

pressure 1s in psi

temperature is 1n centigrade

probe reading 1s in (negative) mils
(positive probe reading <=> shrinkage)
{negative probe reading <=> expansion)

dimensfons in /sizes/ are in inches or cubic inches
alpha and densfty init are dimensionless

open(unit=7,f1le="'canout’,status='unknown')
open(unit=5,status='old")
rewind(5)

read sample dimensfons
call readsize

read off heading 11nes

read(s,*()1) 4
read(5,'(a20)') text '
read(5,50010,end=20) time, pressure, temperature c, probe 4

format(5x,f7.1,f7.0,f6.0,19.0)

write(6,6001) time, pressure, temperature c, probe
format(5x,f5.1,f7.1,¢6.1,¢9,2) 2
temperaturestemperature c+273. ]

Correct for 1nitia) can size. 11 j
(d can 1s diameter of can at current temperature.) 3
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d can=d init can-probe/1000.

c
< Find upper and lower 1imits of physical probe readings.
: c
. density min=.6
: density max=l,
call densprob(d can max,density min,temperature)
call densprob(d can min,density max,temperature)
1f(d can.gt.d can max) then
write(6,' (' probe reading too large.'')!)
O go to §
else 1f(d can.1t.d can min) then
write(6,7('' probe reading too small.?f)!)
go to 5
' end 1f
c
) c Calculate density.
c
| {approx=0
z ; 10 density apx=density min+(density max-density min)#*
; & ((d can max-d can)/(d can max-d can min))
! :e' call densprob(d can apx,density apx,temperature)
- {approx=fapprox+l
1f(d can apx.ge.d can) then .
d can max=d can apx Py
y density min=density apx
k else 1f(d can apx.le.d can) then
4 d can min=d can apx :
4! density max=density apx : .
' ‘ end 1f ; :
1) i1f((density max-density min.gt.l.e~5).and.fapprox.1t.12) go to 10
i write(7,60010) time, temperature c, pressure, probe, density apx
g l urite(6,60010) time, temperature ¢, pressure, probe, density apx
4 60010 format(f8.2,2f8.0,18.2,19.4) -
go to 5 3
' 20 stop . j
end g \
\ subroutine densprob(d can,density,temperature) E ]
{ I
' c This routine calculates can diameter for a given density.
: c
l real 1 init sample, 1 fin) sample, ) Init can,
& 1 finl can, 1 intt plugs, 1 finl plugs
common /sizes/ 1 init sample, 1 finl sample, 1 init can,
l ] 1 £in] can, 1 inft plugs, 1 finl plugs, d nit sample,
& d finl sample, d init can, d finl can, v Init can,
& w finl can, density init, alpha
' c

20k e iR (3
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real 1 sample,1 sample {nit, 1 sample {init 20
data p1/3.1415926/

1 sample init 20=1 1nit sample

volume init 20=pi*1 init sample*d in{t sample®d init sample/4.
d sample init 20=d init sample

vol can 20=(1 finl can -~ 1 fin1 plugs)¥pi*

(d £in] sample + w finl can)*w finl can

Calculate integrated thermal expansion.

expand al203=7.2978e-6*(temperature~293,)+
7.8486e-10% (temparature-293. )*(temperature-800.)
expand 304ss=1.7751e-5%(temperature-293.)+
5.0423e-9%(temperature-293. )% (temperature-800.)

Correct lengths and volumes for temperature.

d sample ifnit=d sample init 20%(l.+expand al203)
1 sample init=1 sample fnft 20%(1.+expand al203)
volume {nit=volume {n{it 20%(1.+3.%expand &i203)
vol can=vol can 20%(1.+3.%expand 304ss)

Calculate can geometry.

volume=volume init*(density tnit/density)

d sample=((4*volume*d sample init¥**alpha)/(pi*]1 sample init))%#
(1.7¢2.+alpha))

1 sample=(4.*votume)/(pi*d sample**2)

wali=(-p{i*] gample™d sample+
sqrt{{pi*] sample*d sample)*#2+4.%pi%] sample®vol can))
7(2.%p1%1 sample)

d can=d sample+2.%yall

return

end

subroutine readsize

this routine reads size dat for the sample

real ) init sample, 1 finl sample, 1 init can,

1 finl can, 1 Inf1t plugs, 1 finl plugs

common /sizes/ 1 init sample, 1 finl sample, 1 1nit can,
1 fin) can, 1 Init plugs, 1 finl plugs, d init sample,
d finl sample, d init can, d finl can, v init can,

w fin] can, density init, alpha

read (5,505) 1 init sample, 1 inft can,
1 finl can, 1 fnit plugs, 1 finl plugs, d Init sample,

—
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d 1nit can, d fin) can, v init can,
w finl can, density init
format (£6.0)

1 finl sample=1 finl can-1 finl plugs

4 finl sample=d finl can-2.% finl can
alpha=log(1 finl sample/1 init sample)/
Tog(d finl sample/d init sample)

return

end







